1 Anti-Derivatives

- 1. True **FALSE** Just like differentiation where we can use the chain rule/product rule/quotient rule/etc. to always be able to find the derivative of a function, we can find similar rules to do the same with finding an anti-derivative.
- 2. True **FALSE** There exists a unique anti-derivative.
- 3. Find an antiderivative of $\frac{1}{2x}$.

Solution: By the constant integration law, we know that an antiderivative of $\frac{1}{2x}$ is half an antiderivative of $\frac{1}{x}$, thus it suffices to find an antiderivative of $\frac{1}{x} = x^{-1}$. Ideally, we would take $\frac{x^{n+1}}{n+1}$ for an antiderivative of x^n , but -1+1=0 so we cannot use the power antiderivative rule. But, we remember that the derivative of $\ln x$ is $\frac{1}{x}$. So, an antiderivative of $\frac{1}{2x}$ is $\frac{\ln x}{2}$.

4. Find an antiderivative of $5e^x$.

Solution: An antiderivative of e^x is e^x and so by the constant integration law, an antiderivative of $5e^x$ is $5e^x$.

5. Find an antiderivative to e.

Solution: We can write $e = e \cdot x^0$. An antiderivative to x^0 is x + 1 so by the constant antiderivative law, an antiderivative to e is e(x + 1) = ex + e.

6. Find an antiderivative of $x + \sqrt{x}$.

Solution: An antiderivative of x is $\frac{x^2}{2} + 5$ and an antiderivative of $\sqrt{x} = x^{1/2}$ is $\frac{2}{3}x^{3/2} + 10$ and so by the addition integration law, an antiderivative of $x + \sqrt{x}$ is $\frac{x^2}{2} + \frac{2}{3}x^{3/2} + 15$.

7. Find an antiderivative to $8t^3 + 15t^2$.

Solution: An antiderivative of t^3 is $\frac{t^4}{4}$ and an antiderivative of t^2 is $\frac{t^3}{3} + \pi$. So using the constant and addition antiderivative law, we get that an antiderivative of $8t^3 + 15t^2$ is $8\frac{t^4}{4} + 15\frac{t^3}{3} + 15\pi = 2t^4 + 5t^3 + 15\pi$.

8. Find an antiderivative to $\cos u$.

Solution: One choice is $\sin u + 5$.

9. Find an antiderivative to $\sin(2t)$.

Solution: We want to guess $-\cos(2t)$ but the derivative of $-\cos(2t)$ is $\sin(2t) \cdot 2$ by the chain rule. So we can multiply by one half to get a function that works. So one choice is $\frac{-\cos(2t)}{2}$.

10. Find the indefinite integral $\int (4t^3 + 3t^2)dt$.

Solution: The indefinite integral is

$$\int (4t^3 + 3t^2)dt = t^4 + t^3 + C.$$

11. Find the indefinite integral $\int \frac{1}{3x} dx$.

Solution: The indefinite integral is

$$\int \frac{1}{3x} dx = \frac{1}{3} \int \frac{1}{x} dx = \frac{\ln|x|}{3} + C.$$

2 Fundamental Theorem of Calculus I

2.1 Concept

12. If F is an antiderivative for f on [a, b], then $\int_a^b f(x) dx = F(b) - F(a)$.

2.2 Problems

13. Evaluate the integral $\int_2^5 (x^2+1)dx$.

Solution: An antiderivative of $x^2 + 1$ is $\frac{x^3}{3} + x = F(x)$. So

$$\int_{2}^{5} (x^{2}+1)dx = F(5) - F(2) = \frac{125}{3} + 5 - \frac{8}{3} - 2 = \frac{117}{3} + 3 = 39 + 3 = 42.$$

14. Evaluate the integral $\int_0^4 \sqrt{x} dx$.

Solution: We have that $\int_0^4 \sqrt{x} dx = \frac{2}{3} \cdot x^{3/2} \mid_0^4 = \frac{2}{3}(8-0) = \frac{16}{3}.$

15. Evaluate the integral $\int_{1}^{8} \sqrt[3]{x} dx$.

Solution: We have

$$\int_{1}^{8} \sqrt[3]{x} = \frac{3}{4} x^{4/3} \mid_{1}^{8} = \frac{3}{4} (16 - 1) = \frac{45}{4}.$$

16. Evaluate the integral $\int_0^1 e^{x+1} dx$.

Solution: An antiderivative of e^{x+1} is itself so we can take

$$\int_0^1 e^{x+1} dx = e^{x+1} \mid_0^1 = e^2 - e^1 = e^2 - e.$$