1 Anti-Derivatives

1. True FALSE Just like differentiation where we can use the chain rule/product rule/quotient rule/etc. to always be able to find the derivative of a function, we can find similar rules to do the same with finding an antiderivative.
2. True FALSE There exists a unique anti-derivative.
3. Find an antiderivative of $\frac{1}{2 x}$.

Solution: By the constant integration law, we know that an antiderivative of $\frac{1}{2 x}$ is half an antiderivative of $\frac{1}{x}$, thus it suffices to find an antiderivative of $\frac{1}{x}=x^{-1}$. Ideally, we would take $\frac{x^{n+1}}{n+1}$ for an antiderivative of x^{n}, but $-1+1=0$ so we cannot use the power antiderivative rule. But, we remember that the derivative of $\ln x$ is $\frac{1}{x}$. So, an antiderivative of $\frac{1}{2 x}$ is $\frac{\ln x}{2}$.
4. Find an antiderivative of $5 e^{x}$.

Solution: An antiderivative of e^{x} is e^{x} and so by the constant integration law, an antiderivative of $5 e^{x}$ is $5 e^{x}$.
5. Find an antiderivative to e.

Solution: We can write $e=e \cdot x^{0}$. An antiderivative to x^{0} is $x+1$ so by the constant antiderivative law, an antiderivative to e is $e(x+1)=e x+e$.
6. Find an antiderivative of $x+\sqrt{x}$.

Solution: An antiderivative of x is $\frac{x^{2}}{2}+5$ and an antiderivative of $\sqrt{x}=x^{1 / 2}$ is $\frac{2}{3} x^{3 / 2}+10$ and so by the addition integration law, an antiderivative of $x+\sqrt{x}$ is $\frac{x^{2}}{2}+\frac{2}{3} x^{3 / 2}+15$.
7. Find an antiderivative to $8 t^{3}+15 t^{2}$.

Solution: An antiderivative of t^{3} is $\frac{t^{4}}{4}$ and an antiderivative of t^{2} is $\frac{t^{3}}{3}+\pi$. So using the constant and addition antiderivative law, we get that an antiderivative of $8 t^{3}+15 t^{2}$ is $8 \frac{t^{4}}{4}+15 \frac{t^{3}}{3}+15 \pi=2 t^{4}+5 t^{3}+15 \pi$.
8. Find an antiderivative to $\cos u$.

Solution: One choice is $\sin u+5$.
9. Find an antiderivative to $\sin (2 t)$.

Solution: We want to guess $-\cos (2 t)$ but the derivative of $-\cos (2 t)$ is $\sin (2 t) \cdot 2$ by the chain rule. So we can multiply by one half to get a function that works. So one choice is $\frac{-\cos (2 t)}{2}$.
10. Find the indefinite integral $\int\left(4 t^{3}+3 t^{2}\right) d t$.

Solution: The indefinite integral is

$$
\int\left(4 t^{3}+3 t^{2}\right) d t=t^{4}+t^{3}+C
$$

11. Find the indefinite integral $\int \frac{1}{3 x} d x$.

Solution: The indefinite integral is

$$
\int \frac{1}{3 x} d x=\frac{1}{3} \int \frac{1}{x} d x=\frac{\ln |x|}{3}+C .
$$

2 Fundamental Theorem of Calculus I

2.1 Concept

12. If F is an antiderivative for f on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

2.2 Problems

13. Evaluate the integral $\int_{2}^{5}\left(x^{2}+1\right) d x$.

Solution: An antiderivative of $x^{2}+1$ is $\frac{x^{3}}{3}+x=F(x)$. So

$$
\int_{2}^{5}\left(x^{2}+1\right) d x=F(5)-F(2)=\frac{125}{3}+5-\frac{8}{3}-2=\frac{117}{3}+3=39+3=42 .
$$

14. Evaluate the integral $\int_{0}^{4} \sqrt{x} d x$.

Solution: We have that $\int_{0}^{4} \sqrt{x} d x=\left.\frac{2}{3} \cdot x^{3 / 2}\right|_{0} ^{4}=\frac{2}{3}(8-0)=\frac{16}{3}$.
15. Evaluate the integral $\int_{1}^{8} \sqrt[3]{x} d x$.

Solution: We have

$$
\int_{1}^{8} \sqrt[3]{x}=\left.\frac{3}{4} x^{4 / 3}\right|_{1} ^{8}=\frac{3}{4}(16-1)=\frac{45}{4} .
$$

16. Evaluate the integral $\int_{0}^{1} e^{x+1} d x$.

Solution: An antiderivative of e^{x+1} is itself so we can take

$$
\int_{0}^{1} e^{x+1} d x=\left.e^{x+1}\right|_{0} ^{1}=e^{2}-e^{1}=e^{2}-e .
$$

